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ABSTRACT

When we want to apply the general linear model to a set of data, we have 
various methods to choose from to estimate the model parameters.  The most 
popular one is the method of least-squares.  This method, however, has weaknesses.  
Alternative regression methods are available which restrain the influence of 
outlying data points.  The least-squares method of regression performs best if the 
population of errors is normally distributed.  If there is a reason to believe that the 
distribution of errors may not be normal, then least-squares estimates and tests 
may be much less efficient than those provided by robust alternative methods 
such as the least-absolute-deviations (LAD), or M-estimators.  Moreover, when 
the sample size is fixed, and no additional data can be obtained to support normal 
approximation, then the “bootstrap method” (Davison, 1997) may be used.  The 
purpose of this paper is to explore the use of the bootstrap method in estimating 
the variances and biases of selected robust estimates of the parameters of a 
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linear model.  Specifically, three robust estimators are considered. Generally, the 
simulation results reveal that the least-squares method still performs quite well 
for slight contamination while the robust methods perform better for moderate 
and high contaminations.

Keywords:  Linear models, Robust alternatives, Bootstrap, Jackknife, Simulation

INTRODUCTION

Suppose we find ourselves in the following common data-analytic situation: 
a random sample                   from an unknown probability distribution F 
is observed and we wish to estimate a parameter of interest   on the basis of     

                     . Furthermore, as a necessary pre-requisite, suppose we also wish to 
approximate the distribution of the statistic, call it T.  This distribution can then 
be used in testing of a hypothesis about the parameter   , estimating the variance 
and bias of T, or estimating the various moments of T.

However, suppose that the sample size n is fixed, and no additional data can 
be obtained to support the use of normal approximation.  If the interest rests 
on estimating the variance, bias, moments, or functions of these for the statistic 
T, then the “bootstrap method” (Davison, 1997) may be used.  In this method, 
the empirical distribution of the sample                          is constructed, say Fn., 
and variate from this distribution is generated, then estimates of the variance or 
moments of T can be obtained from the newly generated variates from Fn.

The bootstrap is a recently developed technique for making certain kinds 
of statistical inferences.  The bootstrap is a data-based simulation method for 
statistical inference, which can be used to produce inferences.  It was introduced 
in 1979 as a computer-based method for estimating the standard error of T.  It 
enjoys the advantage of being completely automatic.  The bootstrap estimate of 
the standard error requires no theoretical calculations and is available no matter 
how mathematically complicated the estimator T may be.

The bootstrap methods had been used in different situations, e.g. estimation 
of location and scale parameters, estimation of the parameters of a linear model, 
and others, to approximate the variance and reduce the biases of the estimators 
in each case.  An extensive review of the state-of-the-art in bootstrap methods can 
be found in Davison et al. (1997), and others.

1 2 nx , x , , x

1 2 nx , x , , x

1 2 nx , x , , x
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OBJECTIVES OF THE STUDY

The purpose of this paper is to explore the use of bootstrap statistics in 
estimating the variances and biases of selected robust estimates of the parameters 
of a linear model,  specifically, the variance and bias of   obtained from the 
following robust alternatives: 1) median approach (Padua, 1987); 2) the 
generalized bootstrap estimate of    ; and 3) and the minimum absolute deviation 
method (Huber, 2009) are estimated by the bootstrap methods.

FRAMEWORK

Basic Concepts
The Linear Model

The linear model is given by: 
				  
	
		              	     (1)

where Y is an n x 1 vector of random observable quantities, X is an n x p matrix of 
constants assumed to be of full rank p,   is a p x 1 vector of unknown parameters, 
   is an n x 1 vector of unobservable random errors.  We assume that             and: 
(a) var ( ) = 0 and: (a)                or (b)              , a positive-definite matrix.
	 An intuitive approach to estimating  is to find the vector which 
minimizes the sum of squares of errors (SSE):

(2)
where    denotes the transpose of   .  The least-squares estimate of    is:

(3)
(4)

where RSS means “residual sum of squares.”  The expected value and variance 
of     are given by:

(5)
                                                       ,
so that   is an unbiased estimator of   .  Note that   is a linear function of Y.  
The theorem of Gauss and Markov (Graybill, 1976) states that among all linear 
unbiased estimates of   , the least-squares estimates have the smallest variance.  
The variance of   from (5) contains   which may be estimated from: 

(6)

Y Xβ ε= + ,  

ε  E(ε) 0=

ε  2var(ε) σ I=  var(ε) Σ=

 SSE ε 'ε (Y Xβ) '(Y Xβ)= = − −
 ε ' ε 

 1β̂ (X 'X) X 'Y−=
 ˆ ˆRSS (Y Y) '(Y Y)= − −

 ˆE(β) β=
 2 1ˆvar(β) σ (X 'X)−=

 β̂

 2 RSSσ
n p

=
−
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It can be shown that if     is multivariate normal, then  has a chi-squared 
distribution with                .

When                is not diagonal, then we can find an orthogonal matrix P such 
that               is diagonal.  The transformation           yields: 

(7)
where                          is diagonal.  The resulting estimate for    is:

(8)
as before.  However, the fact that                           can be exploited to obtain better 
estimates of                as follows: Let , where                  .  Then,

(9)
is called the weighted least-squares estimate of  .  The effect of weighting by 
D is to downplay the effects of points, which correspond to these   with larger 
variances.

Robust Alternatives
The recognition that the structure of the covariance matrix for the error term 

may not be of the form   led statisticians to the weighted least-squares approach.  
The idea was to down weight the effects of those points whose errors have larger 
variances.  In general, outliers in data sets can grossly affect the least-squares 
estimates of       , hence, the need to develop robust alternatives to the least-
squares procedure.

Since its discovery almost 200 years ago, least squares have been the most 
popular method of regression analysis.  However, over the last two or three 
decades, interests in other methods have increased significantly.  This is due to 
newly known deficiencies in the least-squares method and the significant increase 
in computational efficiency of modern machines.  A number research articles on 
alternative approaches to regression analysis have been published since then.

Recently, development of these approaches continues, and further research 
and experience may lead to modifications and improvements.  However, enough 
knowledge and experience have already been gained to be able to say that currently 
proposed alternative methods give sound results, have worthwhile advantages 
over the least-squares methods and can be recommended for practical use.

The alternative methods are chosen because they represent different 
approaches to regression analysis, and they have received considerable attention 
in the statistics field.

 2 2ˆE(σ ) σ=

ε 

 var(ε) Σ=
 P 'ΣP D=  Z PY=

 Z PXβ Pε X 'β ε '= + = +

 var(ε) P 'ΣP D= =
 *' * 1 *' 1β̂ (X X ) X Z (X 'X) X 'Y− −= =

 * 2var(ε ) D σ I= ≠
 1 2Z D Y=

 1 1 1β̂ (X 'D X) X 'D Y− − −=

 1 2 1 2D D D= ⋅

 2σ I
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M-Estimators
Huber (2009) considered the estimate of    obtained by minimizing:

(10)

which he calls the Least-Absolute-Deviation (LAD) estimate of   ,         .  Although 
the estimate cannot be expressed in closed form, this can be computed using 
standard linear programming techniques.  The variance-covariance matrix of the 
estimate naturally is not expressible in closed form.  This makes for an ideal 
situation where the bootstrap approach can be applied.

More generally, consider minimizing a convex function of the residuals given by:
(11)

which Huber (2009) called the M-Estimators of    .

Estimates Based on Quantiles
There are other robust methods for selecting the parameters of a linear model.  

Padua (1987), for example, considered the following procedure:
Consider the augmented data matrix             and consider all possible

submatrices            ,                         least-squares estimates of   ,      , may be 

computed.  The proposed estimate of    is given by:
(12)

This estimate was found to have a high breakdown point and is robust.  The 
variance of this estimator cannot be expressed in closed form, although 
asymptotic results revealed that under suitable conditions, the estimate converges 
in distribution to a multivariate normal distribution.

L-Estimates
The estimation of the variances and biases of     and     for a sample of 

size n with p parameters to estimate is of interest from the point of view of 
practicability.  Bootstrap estimates of these variances are provided in this paper.  
Moreover, bootstrap estimates of the biases are similarly computed in order to 
assess the relative sizes of the mean-squared errors (MSE) for fixed n.

Statistics which are a linear combination of order statistics have similarly been 
tried out in the past.  The L-estimates of    in a location parameter problem can 
be expressed as:

 n

i i
i 1

Q y x 'β
=

= −∑

 
LADβ̂

 n

i i
i 1

Q ρ(y x 'β)
=

= −∑

 [Y : X]
 n

p
 
 
 

 
I I[Y : X ]

 n
I 1, 2, ,

p
 

=  
 


 

I
ˆ{β }

 
PAD I

ˆβ median{β } componentwise=

 
LADβ̂  

PADβ

θ 



95

International Peer Reviewed Journal

(13)

where wi are weights and                             (Stigler, 1973).  In the case of the 
linear model, Rousseeuw (1987) and others considered the following procedure:

Delete one observation and compute the least-squares estimate of    from the 
remaining (n - 1) observations.  Using this estimate of   , estimate    , call it    , 
the fitted value of Y for the deleted case.  Do this for all the other observations.  
Discard all the       whose fitted residuals exceed a pre-defined value.  Fit a least-
squares line on the points that remain.

A serious objection to this procedure arises when          outliers exist.  The 
least-squares estimate fitted on the (n-1)remaining observations will be grossly 
affected by the outliers present even if one of them is removed.  Consequently, 
the results may still turn out to be poor estimates of the true   .

Consequently, Racho (1999) considered a better test for outliers in which                
      observations are discarded as outliers.  His procedure may be described 

as follows:
Let    be the median estimate of Maritz (1979) (other robust estimates of    

may also be considered).  Compute the n fitted residuals:
(14)

The ordered values                          are considered.  Delete the        ,            , 
lowest and highest observations corresponding to these residuals.  Define a new 
set of fitted residuals:

(15)

On the remaining          observations compute the least-squares estimate  .  
The estimator is called the trimmed least-squares              estimate.

As in other robust procedure, the fixed sample variance of the estimator 
cannot be expressed in closed form.

 n

i (i)
i 1

L w x
=

=∑
 

(1) (2) (n)x x x≤ ≤ ≤

 
(i)Y  

(i)Ŷ

 
iY 's

 m 1>

 k [nα]=

 *β

 *
i i ir y x 'β= −  i 1, 2, , n= 

 
(1) (2) (n)r r r≤ ≤ ≤  [α n]  0 α 1< <

 
i (a ) i (1 a )*

i

r ,      if r r r
r

0,      else.
−≤ ≤

= 


 β n(1 α)−

 n(1 2α)−
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        METHODOLOGY

The Jackknife Method
Quenouille (1949) discovered a nonparametric estimate of bias which he 

later called the jackknife.  The idea is as follows:  Let                   be iid random 
quantities coming from a distribution           and these estimate                        is 
obtained.  If             , then the quantity                  is called its bias.  Quenouille’s 
(1949) method is based on sequentially deleting points xi and recomputing  .  
The removing point xi from the data set provides a mass of      to each of the 
remaining points.  Let        be the estimator   computed with the ith point deleted.  
Quenouille’s estimate of the bias is:

(16)

where                  The “bias corrected” estimate of    is then:

(17)

The estimator                        of the variance of the distribution can be “bias

corrected” in this manner.  Following Quenouille’s rule, we find that:
(18)

yielding:, 						                  	        (19)

which we know is an unbiased estimate of      .
On the other hand, Tukey (1958) recommended that the variance should be 

computed as follows:
(20)

where       is given by (16).
It is interesting to apply the bootstrap method for estimating the variances 

and biases of the comprehensive estimator of       ,          ,  found in (3). The 
algorithm is as follows:

Algorithm 1
1.	 Compute        using the full data set.
2.	 Sample with replacement n rows from the original data set and compute 

 
1 2 nx , x , , x

 F(x;θ)  
1 2 nθ̂(x , x , , x )

 ˆE(θ) θ≠  ˆB E(θ) θ= −
 θ̂

 1
n 1−

 
(i)θ̂  θ̂

 
( )

ˆ ˆ ˆBias (n 1)(θ θ)⋅= − −

 n

( ) (i)
i 1

1ˆ ˆθ θ
n⋅

=

= ∑ θ 

 
( )

ˆˆ ˆ ˆθ θ Bias nθ (n 1)θ ⋅= − = − −

 2n
i

i 1

(x x)θ̂
n=

−
=∑

 n
2

(i)
i 1

1ˆBias (x x)
n(n 1) =

= −
− ∑

 n
2

i
i 1

1θ (x x)
n 1 =

= −
− ∑

 2σ

 2
(i) ( )

n 1 ˆ ˆˆvar (θ θ )
n ⋅

−
= −∑

 
( )θ̂ ⋅

 
PADβ

 
PADβ
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the least-squares estimate of    ,     , i=1, 2,..., n.  Get the median component wise.
3.  Repeat the process B times (the number of bootstrap samples).

4.  Let                         .

5.	                         .

6.          	                            .

The “bias corrected” estimator of    is then given by:
	    	                    . 				                	     (21)
	 A similar algorithm is developed for estimating the bias and variance of 

the LAD estimator    ,        , by the bootstrap.

A Generalized Median Estimate Using the Bootstrap Method
A generalization of the method of Padua (1987) is developed using the idea 

of bootstrapping.  From the original set of n observations             sample with 
replacement n observations and compute      ,  the least-squares estimate of   .  
Do this B times, where B is the number of bootstrap samples. Take                            .

The basic purpose of the estimator           is to guard against the effects of gross 
outliers to which the least-squares estimate,        , is very sensitive to.

RESULTS AND DISCUSSION

The Experimental Set-up
We consider the linear model (1) with.  For each p, sample sizes   are used.  

The matrix X and the vector Y are generated as iid random variables from and will 
remain fixed throughout the experiment.

The errors are generated from the Tukey’s (1972) contaminated normal model 
given by:

		                                 , 			                   (22)
where  , respectively.  The first two values represent “slight contamination”, the third 
represents “moderate contamination” while the last value of      represents “high 
contamination”.  Values of     greater than 20% indicate “massive contamination”.  
In this case, even the use of robust regression may be dubious.
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1β β
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GMEβ

 
LSEβ̂
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The models used are:
	 Model 1:  					                 	     (23)
	 Model 2:  
	 Model 3:  
	 Model 4:  

The following estimators are evaluated from the data sets (1) usual least-
squares estimator,         , (2) median estimator (Padua, 1987) for h = p,       ,  (3) 
median estimator for h = n- 1 or the median bootstrap estimator        , i=1, 2,...,n,  
and (4) LAD estimator,         .

Bootstrap estimates of the biases and variances of       and        are computed 
using

Algorithm 1. Bootstrap estimates of the biases and variances of        are be 
    computed using 

Algorithm 2.  For each run, a bootstrap sample   is used.
 

Algorithm 2
1.  Compute the n least-squares estimates       , i=1,2,...,n from the data    
     			      set by sampling with replacement.
2.  Sample with replacement      , j=1,2,...n and compute                            where       
     or the median of the remaining       .

3.  Let                   .

4.	 Compute:                              , and                                            .

Simulation Results
For the simulation process, the following notations were used:

1.         , the least-squares estimator
2.         , the median estimator of Padua (1987)  for  
3.         , the median bootstrap estimator
4.         , the least-absolute-deviations estimator (Huber, 1980)

The tables below show the estimates of    (Tables 1-4), biases, variances, and 
mean-squared errors of the four estimators of       (Tables 5-8 for p =2, and
   =0.01,    =0.05, (slight contamination)   =0.01(moderate contamination), and     
   =0.02 (high contamination). Simulation results for p=3, 4, 5 are alsodiscussed 
below.

 
i 1 iy 1.52 0.98x ε= + +

 
i 1 2 iy 1.52 0.98x 1.12x ε= + − +

 
i 1 2 3 iy 1.52 0.98x 1.12x 2.05x ε= + − + +

 
i 1 2 3 4 iy 1.52 0.98x 1.12x 2.05x 0.75x ε= + − + − +
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PADβ
 

GMEβ
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LADβ̂
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(i)β̂  j j

(i)
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 j {1, 2, , i 1, i 1, , n}∈ − + 

 
(i)β̂

 n
j j
( )
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1β β
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 j j
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ˆBias (n 1)[β β ]⋅= − −   j j j j
( ) ( )

n 1ˆvar (β β )(β β ) '
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−
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Table 1. Estimates of     for p=2,    =0.01  

Table 2. Estimates of      for p =2,     =0.05   

Table 3.  Estimates of     for p=2,    = 0.10      

Table 4.  Estimates of     for p=2,     =0.20

λ 

λ 

λ 

λ 
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Table 5. Variances, Biases, and MSE’s for p=2,    = 0.01    

Table 6. Variances, Biases, and MSE’s for p=2,    =0.05  

   
       

  

     

λ 

λ 
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Table 7. Variances, Biases, and MSE’s for p=2,    =0.10  

Table 8. Variances, Biases, and MSE’s for p=2,   = 0.20  

λ 

λ 
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For the least-squares estimates     , it can be shown that this estimate is 
unbiased for   , that is              .  In the simulation results above, the bias of    were 
not reflected since the algorithm allows only the generation of one data set.  Also, 
if   is multivariate normal with mean 0 and variance      then       is the uniformly 
minimum variance unbiased estimator (UMVUE) for   (Graybill, 1976).  It 
is evident from the tables above (and consequently, the rest of the simulation 
results) that are generally speaking when the contamination is slight, i.e. when    

=  0.01 and    =0.05, the variances and MSE’s of         are comparatively lower.
However, when the contamination is moderate (  =0.10) or high (    =0.20),   
 increases its biases and variances, which in turn increases its MSE’s.  The 

least-squares estimates of the parameters of a linear model are known to be 
sensitive to the effects of extreme or outlying observations.  Outliers can grossly 
influence the estimated values of the parameters as well as their variances to the 
extent that a single outlier can distort these values away from their true values 
significantly (Huber, 1984; Stigler, 1973).

The three robust estimates of    are estimates which are relatively insensitive 
to the effects of gross outliers.  They are “resistant” to the influence of outliers.  
The use of robust estimators may mitigate the effects of outlying observations.  
However, their properties are not generally well-understood, especially for a fixed 
sample size n.  It is for this reason that robust alternatives to the usual least-
squares method have not been properly used in practice (Efron, 1982).

In Padua’s (1987) procedure,   is computed as the component-wise median of 
the least-squares estimates of the       blocks.  Larger block sizes allowed for greater 
flexibility in estimating the variance of the residuals and also provided greater 
protection against outliers.  Thus, the empirical results showed that as we increase 
the block size p, the performance of the         is greatly affected.

The median bootstrap estimator,     , has the best performance of all the 
estimators considered in this paper.  This can be attributed to the fact that the 
median bootstrap estimator has breakdown roughly 50%.  The breakdown of 
an estimator is defined as the smallest proportion of the data that can have an 
arbitrarily large effect on its value.  The high breakdown is good, with 50% being 
the largest value that makes sense.

The least-absolute-deviations estimator,          , generally produces larger MSE’s 
than the least-squares.  However, it is important to note that the M-estimators 
have been found to be unaffected by departures from normality (Efron and 
Tibshirani, 1993).  These results are illustrated in the bar graphs below.

 
LSEβ̂

 ˆE(β) β=  β̂

ε  2σ I  
LSEβ̂

λ λ  
LSEβ̂
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Figure 1. MSE’s for p=2, n=10.

Figure 2. MSE’s for p=2, n=20.
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Figure 3. MSE’s for p=2, n=30.

CONCLUSIONS

The supporting theories, concepts, and empirical results of this study led to 
the following conclusions:

1.	 The least-squares estimator,    , performs best if the population error 
has a normal distribution.  It can likewise perform equally well when 
contamination of the data is only slight;

2.	 Among the three robust alternatives considered in this paper, the median 
bootstrap estimator,  , has the best performance, in general;

3.	 The median estimator of Padua (1987),  , has the largest computational 
complexity, which is of order nx      ;

4.	 The bootstrap method could be used to compute the bias and variance of 
an estimator to make it less biased;

5.	 In general, the bootstrap method can provide approximations of almost 
any statistics, without taking into account the form of their underlying 
distribution.

 
LSEβ̂

 n
p
 
 
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RECOMMENDATIONS

It may be worthwhile to consider the following recommendations for further 
research work related to the existing study.

1.	 Consider good outlier detection techniques before applying the bootstrap 
method.

2.	 For the case of a fixed sample size n, use robust alternative that performs 
equally well with others but which require lesser computing time.

ACKNOWLEDGMENT

The authors would like to thank the Mindanao University of Science and 
Technology (MUST) administration for the financial assistance provided in the 
conduct of this research project.

LITERATURE CITED

Davison, A.C. & Hinkley, D.V. 
1997	 Bootstrap Methods and their Application. Cambridge University Press.  
	 United Kingdom.

Efron, B.
1982	 The Jackknife, the Bootstrap and Other Resampling Plans. SIAM.  
	 [2.4, 2.6, 3.5, 3.7].

Efron, B. & Tibshirani, R. J. 
1993	 An Introduction to the Bootstrap. Chapman & Hall.  New York.

Graybill, F. A. 
1976	 Theory and Application of the Linear Model. Wadsworth Publishing 	
	 Company, Inc. California.

Huber, P. J. & Ronchetti, E.M. 
2009	 Robust Statistics.  2nd ed.  John Wiley & Sons, Inc. New Jersey.



Liceo Journal of Higher Education Research

106

Maritz, J.S. & Jarrett, R.
1978	 A Note on Estimating the Variance of the Sample Median. J. Ann. Stat. Assoc., 
	 Vol. 73, 194-196.

Padua, R.N. 
1987	 Median Estimates of Regression Parameters. Proceedings of National Research 
	 Council of the Philippines, Vol. 7, 212-218.

Quenouille, M. H. 
1949	 Approximate Tests of Correlation in Time-Series 3. In Mathematical Proceedings 

of the Cambridge Philosophical Society (Vol. 45, No. 03, pp. 483-484). 
Cambridge University Press.

Rousseeuw, P. J.
1987	 Least Median of Squares Regression.  J. Ann. Stat. Assoc. 79, 871-880	
	 [7.6, 7.8].

Rousseeuw, P. J. & Leroy, A.M. 
2003	 Robust Regression and Outlier Detection. Wiley, New York 

Stigler, S.M. 
1973	 The Asymptotic Distribution of the Trimmed Mean. The Annals of Statistics, 
	 472-477.

Tukey, J.W. 
1960	 A Survey of Sampling from Contaminated Distributions (in Contributions to 	

Probability and Statistics, I. Olkin, et al.). 448-485 [1.2, 2.3, 4.4].


