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ABSTRACT

The  historical seismic signals recorded for Surigao in the Caraga Region 
of the Philippines for 2011 to 2017 is modeled as a chaotic dynamical system 
whose ergodic density is assumed to obey a power-law distribution. This chaotic 
dynamical system is constructed by using the conjugate approach in  finding 
solutions for the Inverse Frobenius-Perron Problem (IFPP). This new  method 
of analysis determines the difference in distribution between the historical and 
generated  seismic magnitudes. Results show a 76% similarity index between  
the simulated chaotic dynamics and the actual modified historical seismic data. 
The study concludes that a chaotic dynamical system can be used as a basis for 
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forecasting earthquake occurrences in this region of the Philippines.

Keywords: chaotic dynamical systems, Inverse Frobenius-Perron, seismic signals, 
ergodicity, equicontinuity

INTRODUCTION

Earthquake prediction is considered controversial apart from being a 
challenging task.  Recent catastrophic earthquakes that went unpredicted such as  
those which occurred in Mexico (2018) and Japan (2010), are pieces of evidence 
of the challenges that confront seismic signal analysts worldwide. In many cases, 
statistical approaches have been utilized to model earthquake occurrences in time 
or space. A primary statistical model used to predict the temporal probability of 
earthquakes is the Poisson model, which, by definition, is a rare event model. As 
a result, the customarily used hypothesis should be largely associated with the 
prior judgment that earthquakes are rare but not abundant quantitative  evidence  
or  theoretical  derivation.  Wang  et  al.  (2014) demonstrated that the Poisson 
hypothesis is valid for earthquakes of magnitude seven or greater but not for lower 
seismic intensities based on 55,000 events in Taiwan since 1900.On the other 
hand, Greenhough (2008) provided a method for estimating the uncertainties on 
the total number of events for a given period, still using the Poisson hypothesis. 
The main problem with employing stochastic processes to analyze seismic signal 
patterns is  the significant amount of prediction  uncertainty embedded  in it  
rendering, many stochastic models unsuitable for practice.

On  the other hand, if it is accepted  that some  forcing function exists that 
is responsible for the observed seismic signals. We can focus on the discovery of 
this underlying forcing function. In this context, dynamical systems analysis may 
replace stochastic modeling as the basis for earthquake prediction. A dynamical 
system is a sequence of variables {𝑥𝑛: 𝑛 ∈ 𝑍+} such that:

			   𝑥𝑛 =  𝜏(𝑥𝑛−1)                                                    (1) 

When the output (𝑥𝑛) behave like some random numbers, we say we have a 
chaotic dynamical system. Chaotic dynamical systems are suitable for the analysis 
of seismic signals because of their seemingly random behavior, although they are 
generated by a completely deterministic function 𝜏 (∙).
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The random numbers generated by (1) for large n obey an ergodic distribution 
obtained by the method of Frobenius and Perron (1978). In the case of the 
seismic signals, we demonstrate that the ergodic distribution is the power-law 
distribution:
				    𝑓(𝑥)=𝛼 𝑥−𝜆	 (2)

To obtain the dynamical map 𝜏(. ), we use the technique of Inverse Frobenius 
Perronas cited by Nijun-Wei (2015). In this manner, we recover back the original 
seismic signals given the initial data point. Likewise, map (1) can forecast with  
greater accuracy the occurrence of a seismic signal of a given magnitude since the 
technique is based on a purely deterministic analysis.

The present paper is based on 7-year data imputed hourly in the Surigao, 
Caraga area of the Philippines. Only the 2011-2012 observations were utilized 
for illustration purposes.

THEORETICAL BASES

Chaotic Dynamics, Equicontinuity and Uniform Boundedness, Ergodicity, 
and Inverse Frobenius-Perron Operator

Definition 1.1. A stochastic process{𝑋𝑡: 𝑡 ∈ 𝑇} is a sequence of random 
variables indexed by time 𝑇. If 𝑇 is a finite or countably infinite set, then we have 
a discrete stochastic process. Otherwise, we have a continuous-time stochastic 
process (Padua, 2016).

There are many examples of stochastic processes that had been thoroughly 
studied, the most famous of which is the Brownian process. The values of {𝑋𝑡} 
may also be generated deterministically rather than by some random process. 
Define the map 𝑓(. ):

				    𝑓: 𝑅 → 𝑅

such that:
			   𝑋𝑡+1 = 𝑓(𝑋𝑡), 𝑡 =  0,1,2, …

The sequence {𝑋𝑡} also evolves 𝑇 but is not defined by some random process 
and, hence, is not a stochastic process. This is called a dynamical system.

Definition 1.2. A dynamical process {𝑋𝑡: 𝑡 ∈ 𝑇} is a sequence of 
deterministicvariables indexed by the time 𝑇 such that there exists a continuous 
map 𝑓: 𝑅 → 𝑅 for which 

			   𝑋𝑡+1 = 𝑓(𝑋𝑡), 𝑡 =  0,1,2,…
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Thus, if 𝑋0 is known, then:
𝑋𝑛 = 𝑓𝑛(𝑋0)

There exists a special class of deterministic dynamical systems for which 
the values behave like random numbers. This special class is known as chaotic 
dynamical systems.

Orbits and Periodic Points
The following definitions are taken from the lecture notes of Padua (2017).

Definition 1.3: Let 𝑋𝑛+1 = 𝑓(𝑋𝑛). The sequence {𝑋0, 𝑋1 = 𝑓(𝑋0), 𝑋2= 
𝑓(𝑋1), ...} is called the orbit of 𝑋0, denoted by 𝜗(𝑋0).

The first time that the iterates hit the initial point is of particular interest in 
dynamical systems.

Definition 1.4: A point 𝑋𝑝 is a periodic point of 𝑓(∙) if 𝑓(𝑋𝑝) = 𝑋𝑝. The smallest 
positive integer 𝑛 for which this is true is called the period of 𝑋𝑝. The period of 
𝑋𝑝 is defined as:

𝑑 = inf {𝑛: 𝑓𝑛(𝑋𝑝) = 𝑋𝑝}

Definition 1.5. A periodic point 𝑋𝑝 is an attracting fixed point if |𝑓′(𝑋𝑝)| < 
1; a repelling fixed point if |𝑓′(𝑋𝑝)| > 1; is an unstable fixed point if |𝑓(𝑋𝑝)| = 1.

The presence of many periodic points which are either repelling or attracting 
gives the system the appearance of chaos or disorder. For a dynamical system to 
be chaotic, there should be infinitely many periodic points. Also, the following 
conditions should be satisfied:

1. The set of all periodic points 𝑆 is close to every point in the system. That 
is,choose 𝑥 ∈ [𝐷], then ∃ a periodic point 𝑋𝑝 ∋ : |𝑋 −  𝑋𝑝| < 𝜀 ∀ 𝜀 > 0. This is 
called topological transitivity.

2. The intersection of any two orbits 𝜗1 and 𝜗2 starting from two initial points 
𝑋01 and 𝑋02 are non-empty. That is 𝜗1(𝑋01 ) ∩ 𝜗2(𝑋02) ≠ 0.

3. The system is sensitive to initial conditions. This kind of sensitivity of 
this chaotic system is sometimes called the butterfly effect (Lorenz, 2001). 
Whichhighlight the possibility that small causes may have significant effects.
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The Logistic Map
The logistic map is a model that is often used in population dynamics. 

Suppose that certain types of organisms are cultured in a confined space (see, for 
example, the fruit fly experiment of Robert May (1976)). Space has a maximum 
carrying capacity 𝑀. The number of organisms found at any given time 𝑇 is 
expressed as a percentage of this maximum carrying capacity. Let 𝑥(𝑡) denote the 
percentage of individuals at time t. Then, the logistic growth model is given by:

𝑥(𝑡 + 1)= 𝑎𝑥(𝑡)[1 −  𝑥(𝑡)], 𝑡 =   0,1,2, …

If 1 < 𝑎 < 3.758.., then the long-term behavior of the population stabilizes 
at the value:

					     𝑎 − 1 
				    𝑥(∞)= ---------
					         𝑎
Thus, if 𝑎 = 2, the population stabilizes at 𝑥 = 1/2; as the parameter 𝒂 nears 

𝑎 =3, the values begin to fluctuate between two periodic points, one of which 
is at 𝑥 = 2/3 . Further increase in the value of 𝑎 forces the values to fluctuate 
between 4, 8, 16, periodic points until finally, at 𝑎 = 4, an infinite number of 
periodic points are observed. It is worth noting that if we generated random 
numbers from an arcsine distribution on  [0,1], then the graph of this sequence 
would be indistinguishable from a deterministic logistic map with 𝑎 = 4. Chaotic 
systems, therefore, provide the platform for analyzing random systems from 
a deterministic point of view. Li and Yorke (1975) proved that if a dynamical 
system contains a periodic point of period 3, then the system is chaotic. While a 
point of period 3 implies the existence of one of period 5, the converse is false.

Frobenius-Perron Operator
Chaotic dynamical systems result in a trajectory, for any given starting point, 

that behaves as though we have a random-like trajectory. The random trajectory 
can be summarized by a probability distribution called its ergodic distribution 
and is obtained by the Frobenius-Perron method. More specifically, if the initial 
density function on the space 𝐼 is 𝑓(𝑥), for a map 𝜏: 𝐼  → 𝐼, the density 𝜙 under the 
action of 𝜏 is 𝜙 =  𝑃𝜏(𝑓), where the operator 𝑃 𝜏 is called the Frobenius-Perron 
operator (FPO), or transfer operator,corresponding to 𝜏.
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Definition 1.6. Let (𝑋, Σ, 𝜇) be a 𝜎 – finite measure space, and let 𝑆: 𝑋  → 𝑋 
be a nonsingular transformation; i.e., 𝑆 is measurable and 𝜇(𝑆-1(𝐴)) = 0 for all 𝐴 
∈ Σ such that𝜇(𝐴)= 0. In ergodic theory, the operator 𝑃𝑆: 𝐿1(𝑋, Σ, 𝜇) → 𝐿1(𝑋, Σ, 
𝜇) defined implicitly by

is called the Frobenius-Perron operator associated with 𝑆.

Many problems in physical sciences are related to the problem of the existence 
of absolutely continuous invariant measures. It is obvious from (3) that for 𝑓 ∈ 
𝐿1(𝑋, Σ, 𝜇), themeasure 𝜇𝑓 defined by

which is continuous with respect to 𝜇, is invariant under 𝑆 if and only if 𝑓 
is a fixed point of 𝑃𝑆. Here, the invariance of the measure 𝜇𝑓 (under 𝑆) means 
that 𝜇(𝑆-1(𝐴)) =  𝜇𝑓(𝐴) for every measurable set 𝐴. Hence, the existence of an 
continuous invariant measure for a nonsingular transformation is equivalent to 
the fixed-point problem of the corresponding Frobenius-Perron operator.

Equicontinuity and Uniform Boundedness
Definition 1.7. 𝑂𝑘 is uniformly equicontinuous on 𝐼 if ∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀) such 

that ∀𝑡1, 𝑡2 ∈ 𝐼,|𝑡1− 𝑡2|< 𝛿 then|𝑂𝑘(𝑡1)− 𝑂𝑘(𝑡2)|< 𝜀. 

Definition 1.8. 𝑂𝑘 is uniformly bounded on 𝐼 if ∃𝑄 > 0, such that |𝑂𝑘(𝑡)|≤ 
𝑄, ∀ 𝑡, 𝑘.

Theorem 1.1 Arzela-Azcoli Theorem. If 𝑂𝑘 is a sequence of uniformly 
equicontinuous function on 𝐼, uniformly bounded on 𝐼 =  [𝑐, 𝑑], then it has a 
subsequence of functions that converges uniformly on [𝑐, 𝑑].

Ergodic Density
Intuitively, the ergodic theory is concerned with taking certain (stationary) 

sequences and saying something about the convergence of the average of these 
sequences. If you have a function 𝑓: 𝑅 → 𝑅 and a (stationary) sequence {𝑋𝑚}𝑚≥0 
then under what conditions can you say
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exists? From the strong law of large numbers (SLLN), we know that if the 
sequence is composed of independent and identically distributed (𝑖𝑖𝑑) random 
variables with 𝐸|𝑓(𝑋0)|< ∞ then

the ergodic theorem is a sort of generalization of the SLLN. It states that if we
impose some additional structure on {𝑋𝑚}𝑚≥0, namely that the sequence is 
stationary and 𝐸|𝑓(𝑋0)|< ∞ then

if the sequence has the additional property of being ergodic, then

Definition 1.7. A sequence {𝑋𝑚}𝑚≥0 is said to be stationary if 𝑃((𝑋0, 𝑋1, … , 𝑋𝑚) 
∈ 𝐴) = 𝑃((𝑋𝑘, 𝑋𝑘+1, … , 𝑋𝑘+𝑚) ∈ 𝐴) for all 𝑚, 𝑘 ≥ 0 and 𝐴 ∈ 𝐵𝑚+1. We can say the 
distribution of 𝑋𝑛 is the same as the shifted distribution for any shift value of 𝑘. 

Definition 1.8. A map 𝜙: (Ω, 𝐹) →  (Ω, 𝐹) is said to be measure-preserving 
with respect to a probability measure 𝑃 if 𝑃(𝜙𝐴)= 𝑃(𝐴) for all 𝐴 ∈ 𝐹. That is the 
measure of the inverse image of a set is the same as the measure of the set.

Inverse Frobenius-Perron for Non-Symmetric Densities
The inverse Frobenius-Perron problem is associated with the Frobenius-Perron 
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operator. Assume the space under consideration is the interval 𝐼 = [𝑎, 𝑏] and 
points are distributed by a probability density function 𝑓 ∈ 𝐿. That is, the 
probability of the initial  point being in any measurable set 𝐴 ⊂ 𝐼 is

where 𝜆 is the normalized Lebesgue measure on 𝐼. Let points being transformed 
by a map 𝜏. After the transformation, the distribution over 𝐼 would be different. 
Assume the new density is 𝜙, then the probability function becomes

The existence of 𝜙 is given by the Radon-Nikodym Theorem. It is easy to see that 
𝜙 is determined by 𝜏 and 𝑓. We let 𝑃𝜏𝑓 denote 𝜙. Then

To generate a symmetric map with non-symmetric density 𝑓(𝑥), we shall use the
transformation
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OBJECTIVE OF THE STUDY

This study intended to determine the difference in the distribution of the 
historical and generated seismic magnitudes greater or equal to a magnitude-4 
by a new method of analysis using Dynamical systems of the 7-year data from 
Surigao, Caraga Region in  the Philippines, which is highly at risk of earthquakes.

RESULTS AND DISCUSSION

The figure below shows the histogram of the historical data of the earthquake 
magnitudes in Surigao, Caraga Region for 2011-2017 with unequal spacings.

Figure 1. Histogram of the Magnitudes of Surigao, Caraga Region.

The unequal spacings of observations present a problem from a time series 
point of view. Likewise, the seismic magnitudes are not normalized which is a 
problem when we wish to use dynamical systems to model the observations. For 
normalization purposes, we utilize the established table from the US Geological 
Survey (Borradaile, 2003) which observed the largest earthquake magnitude at 
9.2-moment magnitude scale. Normalization was done as follows:
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		  		          actual datum
		  normalized datum= ------------------
					        0

For missing observations, we imputed values based on a Bayesian non-informative 
prior. The lower endpoint is set at. 1 while the upper endpoint is fixed at the 
higher value of the observed data. The normalization process coupled with the 
Bayesian imputation technique resulted in modified data that have equal spacings 
at ℎ = 1 ℎ𝑜𝑢𝑟. The histogram of the modified data is illustrated below:

Figure 2. Histogram of Normalized Magnitude of Surigao, Caraga Region.

The histogram of the modified historical data suggests a power law ergodic 
distribution of the form:

Result 1: If the seismic signals have an ergodic density with a power law form, 
then
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Result 2. The cumulative distribution function of the power law distribution 
describing the seismic signals is given by:

Proof. The proof follows from Result 1 using the specific value of c found.

Result 3. The dynamical map generating the ergodic density for seismic 
signals is given by:
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The maximum likelihood estimator of λ yielded a value close to 1.5 i.e. 𝜆= 
1.497757. Using this value 𝜆, the chaotic dynamical function was iterated using 
the same starting value as the original data, namely, 𝑥 = 0.34. The histogram 
of the resulting iterations is shown below: We note that the histogram of the 
modified historical data and the simulated chaotic dynamics data are almost 
identical.

Figure 3. Histogram of Generated Data of 𝝉 with Bayesian Values.
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Moreover, the chaotic dynamics obeyed the same pattern as the original 
modified historical data with a correlation coefficient of 𝑟= 0.870 or 𝑅2= 75.74%. 
It follows that the chaotic dynamics can be used for forecasting purposes with a 
mean squared error of 𝑀𝑆𝐸 = 0.0012399 or a standard error of 𝑆𝐸 = 0.000392.

CONCLUSIONS

The above results show that the simulated chaotic dynamics and the actual 
modified historical seismic data of Surigao, Caraga Region has an 87% similarity 
index which was supported by the MSE/SE results. It is evident that the 
constructed chaotic dynamical map 𝜏 of this study definitely introduce a new 
kind of method for the analysis of seismic signals in this area.
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