Vol. 6 No. 2 February 2015 CHED Accredited Research Journal, Category A-1 Print ISSN 2094-5019 • Electronic ISSN 2244-0461 doi: http://dx.doi.org/10.7828/ajob.v7i1.839

Species Richness and Riparian Vegetation of Plants in Cagayan de Oro River, Mindanao, Philippines

LESLEY CASAS LUBOS

ORCID No. 0000-0002-8761-3680 lesleyclubos@liceo.edu.ph Liceo de Cagayan University Cagayan de Oro City, Philippines

VICTOR B. AMOROSO

ORCID No. 0000-0001-8865-5551 victoramoroso@gmail.com Central Mindanao University Musuan, Bukidnon, Philippines

FULGENT CORITICO

ORCID No. 0000-0003-3876-6610 cfulgent@yahoo.com Central Mindanao University Musuan, Bukidnon, Philippines

MELJAN DEMETILLO

ORCID No. 0000-0001-5901-2522 meljan_demetillo@yahoo.com Caraga State University Butuan City, Philippines

ABSTRACT

Plants are producers; they take the energy emitted from the sun and turn it into simple sugars which is then turned into ATP (Adenosine Triphosphate), energy usable by the plant and animals) through cellular respiration. Other animals then eat them and receive ten percent of the energy contained in the plant, also known as the ten percent rule. Assessment of plants was conducted along Cagayan de Oro River. It was surveyed for six months, three months each in the wet and in the dry seasons. The four sampling sites in Oro River revealed a total of 97 species belonging to 81 genera and 52 families. Of this number, 62 species were angiosperms, 1 gymnosperms, 24 pteridophytes, and 10 bryophytes. Family Verbenaceae has the highest number of species with six (6) species followed by Moraceae, Araceae and Arecaceae, with both 4 species each. Station 1 has the highest number of species (61), followed by Station 2 (50), Station 4 (36), and Station 3 (30). The study revealed 6 threatened species both locally and nationally. Of these threatened species, 5 were considered vulnerable, 1 endangered, 4 endemic species. Majority of the plant species (63.3 %) that were identified within the study area have economic values. It is recommended that the soft vegetation features of the riparian ecosystem in Oro River will be planted with indigenous or endemic species of trees and interspersed with economic species of plants to improve the quality and biodiversity of the river systems.

Keywords: Plant ecology, floral diversity, riparian vegetation, conservation status, Cagayan de Oro river

INTRODUCTION

The Philippines is considered as one of the megadiverse country in the world. Considering 7,107 islands and islets, the Philippines has many endemic species of plants. However, the country is regarded as one of the biodiversity hotspots in the world. This means that the country is one of the world's biologically richest but has the most threatened ecosystems. For the past decades, natural and anthropogenic causes have cost the country considerable number of species.

Plants are key regulators of ecosystem functions such as soil fertility and stability, water availability, and pest control. Decisions concerning vegetation management on rangeland should take these multiple considerations into account.

The role of plants in the ecosystem is that they form the largest visible part of an ecosystem. Often both the community and the ecosystem are named for the dominant plant present-that is, the plants that, by virtue of their size or numbers, modify and control the environment. River and riparian vegetations are complex and dynamic systems supporting high biodiversity (Chovanec *et al.* 2000). Despite this fact, they are among the environments most disturbed and threatened by humans (Nilsson and Svedmark 2002). Likewise, riparian vegetation plays a crucial role in reducing input of matter from the terrestrial to the aquatic environment (Anbumozhi *et al.* 2005). Studies have shown that land uses affect not only the rivers and streams but also the diversity of the riparian vegetation (Brookes 1994).

Cagayan de Oro River originates from the northwestern slopes of the Kalatungan Mountains of Bukidnon Province. With a watershed area of approximately 115,000, it takes the name of Cagayan de Oro River after the confluence with Bulaong River and flows directly towards north along 16 barangays in a wider river bed reaching the sea at Macabalan Bay of Cagayan de Oro City. This study deals on the species richness and assessment of plants in the riparian vegetation in 4 sampling areas along the Oro River of Cagayan de Oro.

OBJECTIVES OF THE STUDY

This study was conducted to determine the species richness and assessment of vascular plants in Oro River, Cagayan de Oro. Specifically, it aimed to: a) identify the species of plants in each of the sampling sites; b) determine which site has high species richness; c) assess the conservation status of each species; and d) recommend policies for the proper management of the river and riparian ecosystems.

METHODOLOGY

Entry Protocol

The researchers asked permission from the DENR-10 to conduct the study. A wildlife Gratuitous Permit No. 2011-04 was given in pursuant to Republic Act 9147 and its Implementing Rules and Regulations- Joint DENR-DA-PCSD Admin. Order No.01, Series of 2004 and in accordance with DAO No. 2004-55, issued by the Office of the Regional Executive Director, DENR, Cagayan de Oro City, Philippines.

A preliminary survey was conducted along the target areas. A letter asking permission to conduct the study was given to the captains of the communities. The researchers personally visited and explained to the captains and officers the objectives of the study. Asian Journal of Biodiversity Vol. 6 No. 2 February 2015

Sampling Areas

The area studied is along the stretch of Oro River, from upstream of Dansolihon down to Lumbia (Upstream), Taguanao (Middle, Taguanao Bridge), and ends at Puntod, (Downstream, Puntod Bridge).

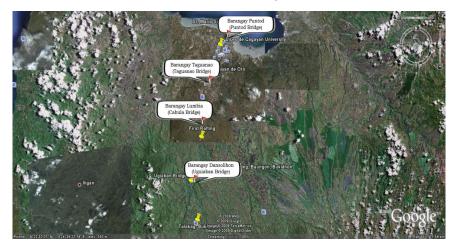


Figure 1. Map Shows the Four Sampling Stations in Cagayan de Oro river.

Four (4) sampling sites were selected as shown in Figure 1:

Sampling Station I (08°17'427 N; 124°35'124 E, elevation: 4.9 masl): Upstream of Dansolihon's (Plate 1) with ecological condition considered pristine and with very few households.

Sampling Station II (08°23'324N; 124°36'774 E, elevation: 3.7 masl): Lumbia station (Plate 2) covers the potential pollution loads from upstream of Dansolihon up to the bridge.

Sampling Station III (08°23'317N; 124°37'776 E, elevation: 2.74 masl): Taguanao Bridge (Plate 3) station with pollution activities from Lumbia up to Mambuaya

Sampling Station IV (08°29'862N; 124°38'983 E, elevation: 2.74 masl): Puntod Bridge station (Plate 4) located near the mouth of Oro River with 'outfall' of all 'point' and 'non-point' pollution discharges by residential, commercial, and industrial establishments in the city poblacion. For each sampling site, the riparian vegetation was described and the species of plants were identified, collected, and photographed (Plates 5-6). Representative specimens for each species were collected and processed as herbarium vouchers. These herbarium specimens were deposited at Central Mindanao University Museum and Liceo de Cagayan University Herbarium.

RESULTS AND DISCUSSION

A. Species Richness in Riparian Vegetation

The number and kinds of species of plants and land use changes in a riparian vegetation will not only affect water quality but consequently alter the composition of the river biodiversity, including macrophytes.

Inventory of plants in four sampling sites in Oro River revealed a total of 97 species (Plates 7-9) belonging to 81 genera and 52 families. Of this number, 62 species were angiosperms, 1 gymnosperms, 24 pteridophytes and 10 bryophytes (Table 1). Family Verbenaceae has the highest number of species with six (6) species, followed by Moraceae, Araceae and Arecaceae with both 4 species each. Station 1 has the highest number of species (61), followed by Station 2 (50), Station 4 (36), and Station 3 (30). Some of these species were also observed along the Pulangui River in Bukidnon (Amoroso 1993).

Species richness differs in 4 sampling sites and dependent on the quality of the riparian vegetation and land use. Of the four sites, sampling site I which is located upstream in Barangay Dansolihon had the most number of species and decreasing downstream (Table 1). The high species richness in upstream sampling site is due to more hard riparian vegetation characterized by tree roots, rocks and river banks covered with big trees and with epiphytes. The low species richness in sampling sites III and IV is due to the alteration of the riparian vegetation as human settlement, industrial and agricultural areas. Thus land use changes have affected the species richness in a riparian vegetation as also shown in the study of Harding *et al.* (1998).

In terms of uniqueness to each of the stations, 16 species were found only in sampling site 1, 11 species in sampling site, 2 species in sampling site 3 and 14 species in sampling site 4.

Plant Groups	Families	Genera	Species	Endemic	Threatened
Angiosperms	32	55	62	4	1
Gymnosperms	ns 1 1 1 0		0	0	
Pteridophytes	10	17	24	0	5
Bryophytes	9	8	10	0	0
TOTAL	52	81	97	4	6

Table 1. Total Number of Families, Genera and Species in Oro River, Cagayan de Oro

B. Conservation Status and Economic Uses of Plant Species

As basis for the protection, conservation and monitoring of the species, assessment of the status was necessary. The study revealed 6 threatened species both locally and nationally. Of these threatened species, 5 were considered vulnerable viz; (Asplenium nidus, Cyathea contaminans, Drynaria quercifolia, Microsorum punctatum, and Psilotum nudum) and one endangered species (Vitex parviflora). Four endemic species were identified, viz; Caryota cumingii, Schefflera odorata, Livistona merillii and Artocarpus blancoi. Majority of the plant species (63.3 %) that were identified within the study area have economic values. Among the economic plants, 20 species are considered as source of food, 8 are utilized for timber/lumber, 19 are ornamental, 4 species have medicinal uses and others were undetermined due to absence of reported uses.

It is noteworthy to mention that a tree (*Ficus balete*) observed in Sampling Site 2 is the habitat of the most primitive and rootless vascular plant, *Psilotum nudum* (Plate 10). The habitat of this rare vascular plant should be protected to avoid the loss of this primitive and rootless vascular plant.

Plant Groups		Number of Spe	ecies in Four Stations	
	1	2	3	4
Angiosperms	32	26	18	31
Gymnosperms	0	1	0	0
Pteridophytes	18	13	4	1
Bryophytes	10	10	8	4
TOTAL	61	50	30	36

Table 2. Number of Species in Four Stations

Legend: Station I: Barangay Dansolihon's

Station III: Taguanao Bridge

Table 3. Plant Species in Four Sampling Sites of
Cagayan de Oro River and their Economic Uses

FAMILY			Sta	tion			Economic Uses
A. ANGIOSPER							
	Species Name	Common					
		name	1	2	3	4	
Anacardiaceae	Mangifera indica L.	Mangga	х	-	х	х	Food
	Tabernaemontana	Kampupot	х	j1			
100	pandacaqui L.						
Amaranthaceae	Amaranthus caudatus L.	Amaranthus				х	
	A. spinosus L.	Kolitis			х	х	
	A. viridis L.	Kolitis			х	х	
Annonaceae	Annona muricata L.	Guayabano, babana		х			Food
Araceae	Amorphophallus campanulatus (Roxb.) B1.	Pongapong / tungkod-			X		
	Ex Decne. Colocasia esculenta L.	langit Gabi		x	-		Food
	Schott &Endl.						
	Philodendron laserum (Jacq.) Scott.	Toothed philodendron	х				
	Xanthosoma sagittifolium L. Schott	Gabi-gabi	X	x			
Araliaceae	Schefllera odorata (Blco.) Merr. & Rolfe	Galamay-amo	x	x	X		Firewood
	Schefllera sp.	Tiglima	х			1	
	Polyscias sp.	Aralia / Polyscias	x			x	
Arecaceae	Caryota cumingii Lodd.ex Mart	Patikan / Pugahan	х		x		
	Cocos nucifera L.	Lubi					food
	Livistona merrillii Becc.	Livistona	X	X	x	X	Raw material for
	Livisiona merrilli Decc.	Livisiona		X			handycrft
	Mana frationes Whenth	Nipa	-	-			
Asclepiadaceae	Nypa fruticans Wurmb	Timbang-	x	x	-	X	Cennig
Asciepiadaceae	Dischidia platyphylla Schitr.	timbang	X	X			
Balsaminaceae	Impatiens balsamina L.	Kamantigi	x	X			ornamentals
Dursummiccue	Impatiens valsamina E. Impatiens montalbanica	Jewelweeds / Balsams	X	A			ornamentals
Bignoniaceae	Spathodea campanulata	African Tulip	х	x			Timber for light
a :	Beauv.	Tree	-				construction
Caricaceae	Carica papaya L.	Kapayas	X	X	х		Food
Commelinaceae	Commelina odorata		х			х	-
Combretaceae	Terminalia catappa L.	Talisay	_			Х	Timber
Convolvulaceae	Ipomea aquatica Forssk.	Kangkong		х			Food
Cucurbitaceae	Cucurbita maxima Duch.	Kalabasa		х	X	Х	
Cyperaceae	Cyperus rotundus L.	Kogon				х	ceiling
Euphorbiaceae	Mallotus sp.	Dalayap	х		х	Х	firewood
	Jatropha curcas L.	Tuba-tuba				Х	Medicinal
	Manihot esculenta Crantz	Balanghoy	X				Food
Fabaceae	Mimosa pudica L.	Makahiya	х	X	1	х	Medicinal
-	Acacia mangium Willd.	Mangium		X	х	х	Lumber
Flagellariaceae	Flagellaria indica L.	-	х				-
Meliaceae	Lansium domesticum Corr.Serr.	Lansones				X	Food
	Swietenia macrophylla King	Mahogany		х		х	Lumber
	Sandoricum koetjape (Burm.f.) Merr.	Santol		-		x	Food
Moraceae	Artocarpus blancoi (Elm.) Merr.	Antipolo	x			x	Food
	A. heterophyllus Lamk.	Nangka	v	+		X	Food
	Ficus balete Merr.	Balite	X	X	-	A	Timber

	Ficus septica	Auili		х		х	Firewood
Moringaceae	Moringa oleifera Lam.	Kamungay		х	х	х	food
Musaceae	Musa sapientum L.	Saging	х			х	Food
Myrtaceae	Psidium guajava L.	Bayabas				х	Food
Passifloaceae	Passiflora edulis Sims	Passion fruit	х				Food
Poaceae/ gramineae	Bambusa vulgaris Schrad.ex.J.C. Wendl.	Kawayan	x	x	X		Fence/furniture
	Paspalum conjugatum Berg.	Carabao-grass	~			х	
There are a	Cymbopogon citratus (DC.) Stapf	Tanglad				x	Food
Rubiaceae	Neonauclea sp.	Kalamansanai	х				Firewood
Rutaceae	Citrus sp.	Citrus		х		х	Food
Sapotaceae	Chrysophyllylum cainito L.	Kaimito	х		х		Food
Solanaceae	Capsicum frutescens L.	Sili	х	х			Food
	Solanum melongena L.	talong		х		х	Food
	Solanum sp.	-	5		x		-
Sonneratiaceae	Sonneratia alba J. Sm.					х	Firewood
Sterculiaceae	Kleinhovia hospita L.	Tan-ag	х	х	х	х	Medicinal
Verbenaceae	Doranta repens L.	Golden rosary	х				Ornamental
	Gmelina arborea Roxb.	Gmelina		х	х		Lumber
	Stachytarpheta jamaicensis (L.) Vahl	Light blue snakeweed		x	X	x	
	Tectona grandis L.	Tekla/teakwo od		x			Lumber
	Vitexparviflora Juss.	Kamagong	х				Lumber
Million and Treat	Lantana camara L.	Baho-baho	x				
Vitaceae	Cissus sp.	Grape ivy	х				Ornamental
P.C.							
B. Gymnospern Pinaceae	ns Pinus kesiva	Benguet Pine	-		T		Ornamental
C. Pteridophyt		Benguet Pine		Х			Ornamentai
		Deans diamin		1	1	1	Ormanna antal
Aspleniaceae	Asplenium nidus Linn. A. polvodon Forst f.	Pugadlawin Sickle	X		-	-	Ornamental ornamental
		spleenwort					
Cyatheaceae	Cyathea contaminans (Wall) Copel.	Pakong- buwaya	x				ornamental
Davalliaceae	Davallia solida (G. Forst) Sw.	Rabbit's-foot fern	x	х			ornamental
Lomariopsidacea	e Nephrolepis hirsutula (Forst.) Presl.	Alolokdo	х	x	X		ornamental
	N. bisserata	Bold sword fern	х	х			Ornamental
	Nephrolepis cordifolia (L.) Presl		x				ornamental
Lygodiaceae	Lygodium circinnatum (Burm.) Sw.	Nitongputi	x	x	X		furniture
Pteridaceae	Adiantum caudatum	Alambrillong- gubat	X				ornamental
	Acrostichum aureum L.	Mangrove fern				x	

	Pityrogramma calomelanos (L.) Link.	Pakong- kalabao		x		
	Pteris glaucovirens Goldm.		X			
	P. mutilata L.	Buntot-kapon		х		
CONTRACTOR CONTRACTOR	P. vitata	Ladder brake	х	х	X	0.00
Polypodiaceae	Drynaria sparcisora			х		Ornamental
	Drynaria quercifolia (Linn.) J. Sm.	Pakpak-lawin	X	x	X	ornamental
	Microsorum punctatum (Linn.) Copel.	Climbing bird's nest fern	X			ornamental
	Pyrossiaadnacens	Pagong- pagongan	X	x		
Psilotaceae	Psilotum nudum (L.) P. Beauv.	Whisk fern		х		ornamental
Selaginellaceae	Selaginella involvens (Sw.) Spring.	Medicinal spikemoss / Arborvitae fern		x		Ornamental
	Selaginella sp.	Spreading club moss	x			ornamental
Thelypteridaceae	Christella parasitica (Linn) Lev.	Lokdo-lokdo	X	x		
	Macrothelypteris sp. 1	Mariana maiden fern	X			
	Thelvpteris sp. 1		X			

Family	Species Name Con	Common					2
	-	name	1	2	3	4	100000000000000000000000000000000000000
Dicranaceae	Holomitrium cylindraceum (P. Beauv.) Wijk& Marg.		x	x	x	x	medicinal
Pottiaceae	Hyophila involuta (Hook.) Jaeg.	InrolledPo tt Moss	х	х	х	х	medicinal
	Hypophila rosea Williams		х	х	х	х	medicinal
Bryaceae	Bryum apiculatum Schwaegr.	Apiculate Bryum Moss	Х	х	Х		
Thuidiaceae	Thuidium cymbifolium (Dozy&Molk.) Dozy &Molk.	Eastern Weft- moss	Х	x	х		
Thuidiaceae	Thuidium glaucinum (Mitt.) Bosch. & Lac.		х	х	х		medicinal
Entodontaceae	Erythrodontium julaceum C. Mull		х	х	х		~

Liverworts							
Family	Species Name	Common name					
			1	2	3	4	
Lejeuneaceae	Cololejeunea lanciloba.		X	х	х	х	medicinal
Marchantiaceae	Marchantia polymorpha	Money liverwort	X	х			medicinal
Ricciaceae	<i>Riccia</i> glauca	crystalwor t	X	Х			
Total No. of species = 97			61	50	30	36	
	percentage		62.89	51.55	30.93	37.11	

Table 4. Threatened Plants in Riparian Vegetation along Oro

1. Asplenium nidus Linn.	Vulnerable	
2. Cyathea contaminans (Wall) Copel.	Vulnerable	
3. Drynaria quercifolia (Linn.) J. Sm.	Vulnerable	
4. Microsorum punctatum (L.) Copel.	Vulnerable	
5. Psilotum nudum (L.) P. Beauv.	Vulnerable	
6. Vitex parviflora Juss.	Endangered	

CONCLUSIONS AND RECOMMENDATIONS

Species richness of plants increases from upstream to downstream sampling areas. Land use changes have affected species richness in riparian vegetation. Hard vegetation such as tree roots, rocks, stone and banks covered with trees exhibited high species richness and with threatened and endemic species. It is recommended that the soft vegetation features of the riparian ecosystem in Oro River will be planted with indigenous or endemic species of trees and interspersed with economic species of plants to improve the quality and biodiversity of the river systems.

ACKNOWLEDGMENTS

The authors would like to express their sincere and heartfelt gratitude to the people who in one way or another shared their time, resources, both material and financial, for the realization of this study. First of all, the authors would like to express their thanks and gratitude to the Office of Policy Planning, Research and Information (OPPRI) of the Commission on Higher Education (CHED) and Silliman University-CHED Zonal Research Center for funding the research. Words are not enough to express our special thanks to Dr. Angel C. Alcala and Dr. Orencio D. Lachica for their wisdom, unending support, trust, and guidance which motivated the authors until the completion of the project and the Liceo de Cagayan University for the support and encouragement throughout the conduct of the study. Recognition is also extended to the collaborating institutions, namely, Central Mindanao University and Caraga State University. To all those who have contributed to the completion of this project but we failed to mention, thank you very much.

LITERATURE CITED

Alejandrino, A.A.,

1976 "Principal River Basins of the Philippines", Published by the National Water Resources Board, October (p. 12).

Amoroso, V.B.

1993 Terrestrial and Aquatic vascular Flora in the Pulangui IV Hydroelectric Project and Vicinities. The Publication Office, University Extension Services. Central Mindanao University. 231 pp.

Amoroso, V. B.

1983 Stipe morphology of Philippine ferns .Dissertation. University of the Philippines, at Diliman, Quezon City.

Amoroso, V. B.

1987 Some endangered and economic and endemic ferns of the Philippines. CMU Journal of Agriculture, Food and Nutrition. 9 (1): 15-32. Asian Journal of Biodiversity Vol. 6 No. 2 February 2015

Amoroso, V. B.

1987 Medical fern and fern allies of Mindanao. Publication Office Extension Services. CMU Musuan, Bukidnon.

Amoroso, V.B., Zamora, P.M., & Rufila, L.V.

2007 The Lycopodiaceae of the Philippine Islands

Anbumozhi, V., Radhakrishnan, J., & Yamaji, E.

2005 Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering, 24, 517–523.

Bartram, E.B.

1939 Mosses of the Philippines. Philippine Journal of Science. 68:1- 425.

Bold, H.C., & La Claire, J.W. II

1987 The Plant Kingdom, Fifth Edition. Prentice-Hall, Inc. New Jersey.

Brookes, A.

1994 River Channel Change. In P. Calow, & G.E. Petts (Eds.), The rivers handbook. Hydrological and ecological principles, Vol. 2 (pp. 55–75). Oxford, London, Edinburgh, Boston, Melbourne, Paris, Berlin, Vienna:Blackwell Scientific Publications.

Chandra, S.

1979 Ferns of the Philippines, Kalikasan, Philippine Journal of Biology. 2:211-226.

Chovanec, A., Schiemer, F., Cabela, A., Gressler, S., Gro" tzer, & C., Pascher

2000 Constructed inshore zones as river corridors through urban areas – the Danube in Vienna: Preliminary results. Regulated Rivers: Research & Management, 16, 175–187.

Co, L. L.

1975 Tentative checklist of species of fern in the Philippines.

Copeland, E.B.

1958 The family polydiaceae. Fern flora of the Philippines. Manila: Bureau of Printing 3: 153-509.

Copeland, E.

1997 Genara Filicum. Waltham, Mass: Chron. Bot.

Copeland, E.

1958-1960 Fern Flora of the Philippines. National Institute Science Technology Monograph 6.

Flores, M.J. & M.T. Zafaralla

2012 An Assessment of the Physiochemical Parameters of Manga River, Cebu, Philippines. IAMURE International Journal of Ecology and Conservation. Print ISSN 2244-1573, Online ISSN 2244-1581. Vol. 4 December 2012. Pp. 30-57.

Ghazoul J. & Sheil D.

2010 Tropical Rain Forest Ecology, Diversity, and Conservation

Gradstein, Robert, Yong Kein-Thai, Monica Suleiman, Afiatri Putrika, Eny Yuniati, Fadzilah Ag kanak, Fuad Bahrul Ulum, Indah Wahyuni, Kanjana Wongkuna, Lesley Lubos, Luong ThiemTam, Mika Rizki Puspaningrum, Mohd Rawiyani,Pg.Hj. Serudin, Musyarofah Zuhri, Ng Aik Min, Nurlisma Junita, Nursahara Pasaribu, & Soonthree Kornochalert.

2010 Bryophytes of Mt. Patuha, West Java, Indonesia .Reinwardtia. Vol 13, No 2, pp: 107 – 123.

Hall, R.

1998 The plate tectonics of Cenozoic SEAsia and the distribution of land and sea, pp. 99-131.

Asian Journal of Biodiversity Vol. 6 No. 2 February 2015

Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S.,

& Jones, E. B. D., III

1998 Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America, 95,14843–14847.

Holttum, R.E.

- 1959 Pteridophyta. Ferns and fern-allies In: Zamora, P.M. and N.S. Vorgrass, 1979. Pteridophyta Flora of the Up campus and Vicinity Quezon City. Government Printing Office, Singapore.
- In: R. Hall & J. D. Holloway (eds.), Biogeography and Geological Evolution of SE Asia. Backhuys Publisher,Leiden.

Iskandar, E.A.P.

2008 The Liverworts of Mt. Tangkuban Perahu

Joaquin, C.C.

1985 Spore Morphology of the Philippines Ferns. Dissertation. University of the Philippines, Diliman Quezon City. pp.122123.

Johansen, D.A.

1980 Plant microtechnique. McGraw-Hill Book Company, New York. p. 216.

John T. Houghton

1997 Global Warming: The Complete Briefing, Third Edition, Cambridge University press, The Edinburgh Building, Cambridge cb2 2ru, UK retrieved from http://www.google.com.ph/books?hl=en&lr=&id=YgT pMEUHtmsC&oi=fnd&pg=PR11&dq=global+warming+philippines &cots=e23N11yBVT&sig=uXFdg2PWdTmlvyuO1TUgI0ISZcA&red ir_esc=y#v=onepage&q=global%20warming%20philippines&f=false

Jones, S.B., & Luchsinger, A.E.

1979 Plant Systematics. McGraw-Hill Book Company.

Lubos, Lesley C.

2000 Taxonomy, Species Richness and Distribution of Mosses in Selected Mountains in Mindanao.

Lubos, Lesley C.

2010 Species Richness, Distribution, and Status of Mosses in Selected Mountains in Mindanao, Philippines. Asian Journal of Biodiversity.1 (1): 63-82.ISI.

Lubos, L. C. & G.V. Japos

2010 Extent of Escherichia coli contamination of Cagayan de Oro River and factors causing contamination: A translational research in Southern Philippines, Liceo Journal of Higher Education Research Vol. 6. No. 2, December 2012 p.p. 44-59

Lubos, L.C. & Orbe, J.

2004 Effects of Some Pollutants in the Distribution of the Aquatic Organisms in the Oro River of the Pilot Barangay of Liceo de Cagayan University. Licean Research Digest ,Vol. 3 No. 2.

Madulid, D.

2000 A Pictorial Cyclopedia of Philippine Ornamental Plants, Second Edition

M.L SO

1995 Mosses and Liverworts of HongKong

Moe, C.L., M.C. Sobsey, G.P. Samsa, & V. Mesolo

Bullitin of the World Health Organization.: 69 (3): 305 – 317.
PMCID: PMC 2393 099 retrieved on http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393099/

Nilsson, C., & Svedmark, M.

 Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environmental Management, 30, 468–480. Pancho, J.V., & Gruezo, W.Sm.

2006 Vascular Flora of Mount Makiling and Vicinity (Luzon: Philippines), Part 2

Philippine Institute of Volcanology and Seismology. 2012

Philippine Standard Geographic Code Interactive. 2012

Piippo, S., Tan, B.C., Murphy, D.H., Juslen, A., & Meng-Shyan, C.2002 A Guide to the Common Liverworts and Hornworts of Singapore

Price, M. G.

1972 Ferns of the Philippines. Kalikasan, Philippine Journal of Biology I:17-53.

Quisumbing, E.

1978 Medicinal Plants of the Philippines. Katha Publishing Company, Inc. Quezon City.

R.L Zhu & M.L. So

1996 Mosses and Liverworts of Hong Kong Vol. 2

Rola, Agnes C., & Cecilia O. Tabien

2001 Saving a River: Why do local governments matter? Journal of Environment Science and Management 4(1-2):57-67. Retrieved on February 5 2013 from http://scholar.google.com.ph/scholar?q=saving +a+river%3A+why+do+local+governments+matter%3FandbtnG=andh l=enandas_sdt=0%2C5

Schenk, G.

¹⁹⁹⁷ Moss Gardening Including Lichens, Liverworts, and other Miniatures

Salgado, A. E.

1990 A checklist of Philippine ferns. The Philippine Journal of Science 119 (2): 132-134.

So, M.L.

1995 Mosses and Liverworts of Hong Kong: Vol. 1. Hongkong: Heavenly People Depot.

Tan, B. C.

1984 A reconsideration of the affinity of Philippine moss flora. 3. Hattori Bot. Lab. 55: 13-22.

Tan, B. C.

1992 Philippine muscology (1979-1989).In: T. Koponen and J. Hyvönen (eds.).Proceedings of the Congress of East Asiatic Bryology, Helsinki, August 12-19, 1990. Bryobrothera 1: 137-141.

Tan, B. C.

1994 The bryophytes of Sabah (North Borneo) with special reference to the BRYOTROP transect of Mount Kinabalu. XIX. The genus Acroporium (Sematophyllaceae, Musci) in Borneo, with notes on species of Java and the Philippines. Willdnowia 24: 255-294.

Tan, B. C.

 1998 Noteworthy disjunctive patterns of Malesian mosses, pp. 235-241.
In: R. Hall & J. D. Holloway (eds.), Biogeography and Geological Evolution of SE Asia. Backhuys Publisher, Leiden.

Tan, B. Ho, B. Lim, Y.H.

2008 A Guide to the Mosses of Singapore. Science Center, Singapore.

Tan, B. C. and Z. Iwatsuki.

1991 A new annotated Philippine moss checklist. Harvard Papers Bot. 3: 1

Tan, B.C., L.C. Lubos, and Uwe Schwarz.

2000 New and Biogeographically Noteworthy Records of Philippine Mosses from Mindanao Island. Tropical Bryology 18.pp.27-38,

Tan, B.C., Timo koponen and Daniel H. Norris

2007 Bryophyte Flora of the Huon Peninsula, Papua New Guinea.LXX. Sematophyllaceae (Musci) 1. Acanthorrhynchium, Acroporium, clastobryophilum, Pseudopiloecium, Radulina, and Trichosteleum. Ann. Bot. Fennici 44:35-78.

Tan, B.C., and Yu Jia.

1999 A Preliminary Revision of Chinese Sematophyllaceae.J.Hattori Bot. Lab.no.86:1-70.

Wee, Y. C.

1984 Common ferns and fern-allies of Singapore. National University of Singapore Department of Botany. 3:31.

Zamora, P. M. and L. L. Co.

1986 Guide to the Philippine flora and fauna. JMC Press, Inc. , Quezon City Philippines. 2:28.

Zamora, P. M.

1975 Urban ferns and fern allies. Kalikasan Press. Quezon City. pp. 3-4

Zhu, R.L. and So, M.L.

1995 Mosses and Liverworts of Hong Kong: Vol. 2. Hong Kong: Heavenly People Depot.

CAGAYAN DE ORO RIVER BEFORE AND AFTER SENDONG AND PABLO

Liceo De Cagayan University, Cagayan de Oro City Produced with support from Commission on Higher Education (CHED)

BEFORE

AFTER

Plate 1. Station 1: Dansolihon - Uguiaban Bridge.

BEFORE

AFTER

Plate 2. Station 2: Lumbia - Cabula Bridge.

BEFORE

AFTER

Plate 3. Station 3: Taguanao - Taguanao Bridge.

BEFORE

AFTER

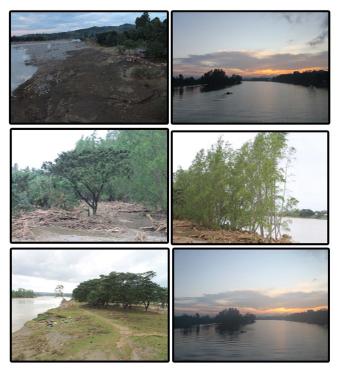


Plate 4. Station 4: Puntod - Puntod Bridge.

Liceo De Cagayan University, Cagayan de Oro City Produced with support from Commission on Higher Education (CHED)

Plate 5. Plants Sampling in Cagayan de Oro River.



Plate 6. Plants Sampling in Cagayan de Oro River.

Liceo De Cagayan University, Cagayan de Oro City Produced with support from Commission on Higher Education (CHED)

Tectona grandis L. f. LEGUMINACEAE Station 2: Kabula Bridge, Barangay Lumbia Ficus septica Burm. f. MORACEAE Station 2: Kabula Bridge, Barangay Lumbia Livistona sp. ARECACEAE Station 1: Barangay Dansolihon Cassia mangium Rolfe. FABACEAE/LEGUMINOSAE Station 4: Puntod Bridge

Mangifera indica L. ANACARDIACEAE Station 2: Kabula Bridge, Barangay Lumbia Arenga pinnata (Wurmb) Merr. ARECACEAE Station 2: Kabula Bridge, Barangay Lumbia

Tabernaemontana pandacaqui Poir. APOCYNACEAE Station 2: Kabula Bridge, Barangay Lumbia

Nypa fruticans Wurmb. ARECACEAE/PALMAE Station 4: Puntod Bridge

Malllotus multiglandulosus (R Ex Bl.) Hurus EUPHORBIACEAE Station 4: Puntod Bridge

Leucaena leucocephala (Lam.) de Wit FABACEAE/LEGUMINOSAE Station 4: Puntod Bridge

ARALIACEAE Station 1: Barangay Dansolihon

Artocarpus blancoi (Elm.) Merr. MORACEAE Station 1: Barangay Dansolihon

Plate 7. Aqua & Terrestial Flora: Plants in Cagayan de Oro River.

Asian Journal of Biodiversity Vol. 6 No. 2 February 2015

Liceo De Cagayan University, Cagayan de Oro City Produced with support from Commission on Higher Education (CHED)

Dischidia platyphylla Schltr. ASCLEPIADACEAE Station 1: Barangay Dansolihon

Impatiens balsamina L BALSAMINACEAE Station 1: Barangay Dansolihon Impatiens montalbanica BALSAMINACEAE Station 1: Barangay Dansolihon

Solanum sp. SOLANACEAE Station 2: Kabula Bridge, Barangay Lumbia

Stachytarpeta jamaicensis (L.) Vahl. VERBENACEAE Station 4: Puntod Bridge

Station 4: Puntod Bridge

Chromolaena odorata (L.) R.M. King & H. Rob. ASTERACEAE/COMPOSITAE Station 3: Pelaez Bridge

Station 4: Puntod Bridge

Philodendron lacerum (Jacq.) Schott. ARACEAE Station 1: Barangay Dansolihon

Station 1: Barangay Dansolihon

Plate 8. Aqua & Terrestial Flora: Plants in Cagayan de Oro River.

Liceo De Cagayan University, Cagayan de Oro City Produced with support from Commission on Higher Education (CHED)

Asp enium polyodon Forst. ASPLENIACEAE Station 1: Barangay Dansolihon Davallia solida (Forst.) Sw. DAVALLIACEAE Station 1: Barangay Dansolihon

Sphaeropteris glauca (Wall. Ex Hook) Copel. Station 1: Barangay Dansolihon

Lygodium circinnatum (Burm.) Sw. LYGODIACEAE Station 2: Kabula Bridge, Barangay Lumbia

Psilotum nudum (L.) Beauv. PSILOTACEAE Station 2: Kabula Bridge, Barangay Lumbia Pityrogramma calomelanos (L.) Link PTERIDACEAE Station 1: Barangay Dansolihon

Pteris mutilata L. PTERIDACEAE Station 2: Kabula Bridge, Barangay Lumbia

Pteris vitata L PTERIDACEAE Station 2: Kabula Bridge, Barangay Lumbia

Lumbia

PTERIDACEAE Station 4: Puntod Bridge Moore POLYPODIACEAE Station 1: Barangay Dansolihon

Microsorium punctatum (L.) Copel. POLYPODIACEAE Station 1: Barangay Dansolihon

Plate 9. Aqua & Terrestial Flora: Plants in Cagayan de Oro River.

Plate 10. Habit of *Ficus balete* and the Branch with the Primitive Rootless Vascular Plant *Psilotum nudum* (inset) Observed in Sampling Site 2.